Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 7(7): e2200310, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36950773

RESUMO

Carassius auratus complex formula (CACF) is a traditional Chinese medicine known for its antidiabetic effects. Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide, and there are currently no effective therapies for advanced HCC. This study explores the comprehensive effects and possible mechanisms of CACF on HCC. The results show that CACF reduces the viability of hepatoma cells in vitro, while benefiting normal hepatocytes. In addition, CACF inhibits hepatoma cell growth in a zebrafish xenotransplantation model and decreases lipid accumulation, represses inflammation and cell proliferation markers in fatty acid translocase (CD36) transgenic zebrafish, and inhibits the expression of cell proliferation and ß-catenin downstream targets in telomerase (tert) transgenic zebrafish models. Ingenuity Pathway Analysis reveals that CACF exerts multiple functions, including reduction of inflammation and inhibition of lipid transporter and PPAR signaling pathway. Surprisingly, CACF also regulates the expression of genes and reduces coronavirus infection and pathogenesis in a zebrafish model. CACF treatment is validated to regulate the expression of genes for anti-coronavirus activity. Mechanistically, CACF stabilizes G-quadruplex and reduces cell senescence associated ß-galactosidase activity. In summary, CACF may be a promising therapeutic agent with multiple functions including anticancer, anti-inflammation, and anti-microorganisms in a zebrafish model.


Assuntos
COVID-19 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Peixe-Zebra/genética , Carpa Dourada , Carcinogênese , Senescência Celular , Inflamação , Lipídeos/uso terapêutico
2.
Antioxidants (Basel) ; 12(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36670987

RESUMO

Deregulation of redox homeostasis is often associated with an accelerated aging process. Ribose-5-phosphate isomerase A (RPIA) mediates redox homeostasis in the pentose phosphate pathway (PPP). Our previous study demonstrated that Rpi knockdown boosts the healthspan in Drosophila. However, whether the knockdown of rpia-1, the Rpi ortholog in Caenorhabditis elegans, can improve the healthspan in C. elegans remains unknown. Here, we report that spatially and temporally limited knockdown of rpia-1 prolongs lifespan and improves the healthspan in C. elegans, reflecting the evolutionarily conserved phenotypes observed in Drosophila. Ubiquitous and pan-neuronal knockdown of rpia-1 both enhance tolerance to oxidative stress, reduce polyglutamine aggregation, and improve the deteriorated body bending rate caused by polyglutamine aggregation. Additionally, rpia-1 knockdown temporally in the post-developmental stage and spatially in the neuron display enhanced lifespan. Specifically, rpia-1 knockdown in glutamatergic or cholinergic neurons is sufficient to increase lifespan. Importantly, the lifespan extension by rpia-1 knockdown requires the activation of autophagy and AMPK pathways and reduced TOR signaling. Moreover, the RNA-seq data support our experimental findings and reveal potential novel downstream targets. Together, our data disclose the specific spatial and temporal conditions and the molecular mechanisms for rpia-1 knockdown-mediated longevity in C. elegans. These findings may help the understanding and improvement of longevity in humans.

3.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292952

RESUMO

Lysine-deficient protein kinase-1 (WNK1) is critical for both embryonic angiogenesis and tumor-induced angiogenesis. However, the downstream effectors of WNK1 during these processes remain ambiguous. In this study, we identified that oxidative stress responsive 1b (osr1b) is upregulated in endothelial cells in both embryonic and tumor-induced angiogenesis in zebrafish, accompanied by downregulation of protein phosphatase 2A (pp2a) subunit ppp2r1bb. In addition, wnk1a and osr1b are upregulated in two liver cancer transgenic fish models: [tert x p53-/-] and [HBx,src,p53-/-,RPIA], while ppp2r1bb is downregulated in [tert x p53-/-]. Furthermore, using HUVEC endothelial cells co-cultured with HepG2 hepatoma cells, we confirmed that WNK1 plays a critical role in the induction of hepatoma cell migration in both endothelial cells and hepatoma cells. Moreover, overexpression of OSR1 can rescue the reduced cell migration caused by shWNK1 knockdown in HUVEC cells, indicating OSR1 is downstream of WNK1 in endothelial cells promoting hepatoma cell migration. Overexpression of PPP2R1A can rescue the increased cell migration caused by WNK1 overexpression in HepG2, indicating that PPP2R1A is a downstream effector in hepatoma. The combinatorial treatment with WNK1 inhibitor (WNK463) and OSR1 inhibitor (Rafoxanide) plus oligo-fucoidan via oral gavage to feed [HBx,src,p53-/-,RPIA] transgenic fish exhibits much more significant anticancer efficacy than Regorafenib for advanced HCC. Importantly, oligo-fucoidan can reduce the cell senescence marker-IL-1ß expression. Furthermore, oligo-fucoidan reduces the increased cell senescence-associated ß-galactosidase activity in tert transgenic fish treated with WNK1-OSR1 inhibitors. Our results reveal the WNK1-OSR1-PPP2R1A axis plays a critical role in both endothelial and hepatoma cells during tumor-induced angiogenesis promoting cancer cell migration. By in vitro and in vivo experiments, we further uncover the molecular mechanisms of WNK1 and its downstream effectors during tumor-induced angiogenesis. Targeting WNK1-OSR1-mediated anti-angiogenesis and anti-cancer activity, the undesired inflammation response caused by inhibiting WNK1-OSR1 can be attenuated by the combination therapy with oligo-fucoidan and may improve the efficacy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Peixe-Zebra/metabolismo , Rafoxanida , Proteína Fosfatase 2/metabolismo , Lisina , Proteína Supressora de Tumor p53 , Antígenos de Histocompatibilidade Menor , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fatores de Transcrição/metabolismo , beta-Galactosidase/metabolismo
4.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887232

RESUMO

Ribose-5-phosphate isomerase A (RPIA) regulates tumorigenesis in liver and colorectal cancer. However, the role of RPIA in lung cancer remains obscure. Here we report that the suppression of RPIA diminishes cellular proliferation and activates autophagy, apoptosis, and cellular senescence in lung cancer cells. First, we detected that RPIA protein was increased in the human lung cancer versus adjust normal tissue via tissue array. Next, the knockdown of RPIA in lung cancer cells displayed autophagic vacuoles, enhanced acridine orange staining, GFP-LC3 punctae, accumulated autophagosomes, and showed elevated levels of LC3-II and reduced levels of p62, together suggesting that the suppression of RPIA stimulates autophagy in lung cancer cells. In addition, decreased RPIA expression induced apoptosis by increasing levels of Bax, cleaved PARP and caspase-3 and apoptotic cells. Moreover, RPIA knockdown triggered cellular senescence and increased p53 and p21 levels in lung cancer cells. Importantly, RPIA knockdown elevated reactive oxygen species (ROS) levels. Treatment of ROS scavenger N-acetyl-L-cysteine (NAC) reverts the activation of autophagy, apoptosis and cellular senescence by RPIA knockdown in lung cancer cells. In conclusion, RPIA knockdown induces ROS levels to activate autophagy, apoptosis, and cellular senescence in lung cancer cells. Our study sheds new light on RPIA suppression in lung cancer therapy.


Assuntos
Autofagia , Neoplasias Pulmonares , Aldose-Cetose Isomerases , Apoptose , Linhagem Celular Tumoral , Senescência Celular , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Cell Signal ; 96: 110371, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649473

RESUMO

With-no-lysine kinases (WNKs) are a novel family of serine/threonine protein kinases participating in ion homeostasis via the WNK-OSR1/SPAK-NKCC cascade. Recent studies of WNK1 have revealed that its related signaling pathways mediated tumor-induced angiogenesis and carcinogenesis and uncovered novel roles of WNK1 in endothelial cell migration and proliferation, tumor cell proliferation, and metastasis. Herein, we review the functions of WNK1 in cancer metastasis and angiogenesis and propose WNK1 targeting as an anti-cancer strategy.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Antígenos de Histocompatibilidade Menor , Transdução de Sinais/fisiologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
8.
J Hazard Mater ; 423(Pt A): 126954, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34474361

RESUMO

4-Aminobiphenyl (4-ABP) is a human bladder cancer carcinogen found in the manufacture of azo dyes and the composition of cigarette smoke in the environment. To determine whether low concentrations of 4-ABP induced or promote liver carcinogenesis and investigate the underlying mechanism, we have established the liver cell carcinogenesis model in human liver cell lines and zebrafish to evaluate liver cancer development associated with long-term exposure to low concentrations of 4-ABP. Results show that repeated 4-ABP exposure promoted cellular proliferation and migration via the involvement of ROS in Ras/MEK/ERK pathway in vitro. Also, 4-ABP (1, 10, and 100 nM) induces hepatocellular carcinoma (HCC) formation in HBx, Src (p53-/-) transgenic zebrafish at four months of age and in wild-type zebrafish at seven months of age. In addition, we observed a correlation between the Ras-ERK pathway and 4-ABP-induced HCC in vitro and in vivo. Our finding suggests low concentrations of 4-ABP repeated exposure is a potential risk factor for liver cancer. To our knowledge, this is the first report on the promotion of liver carcinogenesis in human liver cells and zebrafish following 4-ABP exposure.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese , Humanos , Neoplasias Hepáticas/induzido quimicamente , Peixe-Zebra
9.
J Biomed Sci ; 28(1): 8, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33435938

RESUMO

BACKGROUND: Congenital myopathy (CM) is a group of clinically and genetically heterogeneous muscle disorders, characterized by muscle weakness and hypotonia from birth. Currently, no definite treatment exists for CM. A de novo mutation in Tropomyosin 3-TPM3(E151G) was identified from a boy diagnosed with CM, previously TPM3(E151A) was reported to cause CM. However, the role of TPM3(E151G) in CM is unknown. METHODS: Histopathological, swimming behavior, and muscle endurance were monitored in TPM3 wild-type and mutant transgenic fish, modelling CM. Gene expression profiling of muscle of the transgenic fish were studied through RNAseq, and mitochondria respiration was investigated. RESULTS: While TPM3(WT) and TPM3(E151A) fish show normal appearance, amazingly a few TPM3(E151G) fish display either no tail, a crooked body in both F0 and F1 adults. Using histochemical staining for the muscle biopsy, we found TPM3(E151G) displays congenital fiber type disproportion and TPM3(E151A) resembles nemaline myopathy. TPM3(E151G) transgenic fish dramatically swimming slower than those in TPM3(WT) and TPM3(E151A) fish measured by DanioVision and T-maze, and exhibit weaker muscle endurance by swimming tunnel instrument. Interestingly, L-carnitine treatment on TPM3(E151G) transgenic larvae significantly improves the muscle endurance by restoring the basal respiration and ATP levels in mitochondria. With RNAseq transcriptomic analysis of the expression profiling from the muscle specimens, it surprisingly discloses large downregulation of genes involved in pathways of sodium, potassium, and calcium channels, which can be rescued by L-carnitine treatment, fatty acid metabolism was differentially dysregulated in TPM3(E151G) fish and rescued by L-carnitine treatment. CONCLUSIONS: These results demonstrate that TPM3(E151G) and TPM3(E151A) exhibit different pathogenicity, also have distinct gene regulatory profiles but the ion channels were downregulated in both mutants, and provides a potential mechanism of action of TPM3 pathophysiology. Our results shed a new light in the future development of potential treatment for TPM3-related CM.


Assuntos
Carnitina/metabolismo , Miotonia Congênita/metabolismo , Tropomiosina/genética , Animais , Animais Geneticamente Modificados , Músculo Esquelético/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo , Peixe-Zebra/anormalidades , Peixe-Zebra/metabolismo
10.
Clin Transl Med ; 10(8): e252, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33377648

RESUMO

BACKGROUND: Hepatocellular carcinoma ranks fourth in cancer-related mortality currently lacks effective therapeutics. Fucoidan is sulfated polysaccharide that is mainly found in brown seaweeds. In this study, we investigated the effects and mechanisms of low molecular weight fucoidan (i.e. oligo-fucoidan [OF]) preventing hepatocarcinogenesis. METHODS: We used [HBx,src], [HBx,src,p53-/+ ], and [CD36] transgenic zebrafish liver cancer model treated with OF, and performed molecular and histopathological analysis. Transcriptomic and pathways analysis was performed. RESULTS: Decreased expression of lipogenic enzymes, fibrosis markers, and cell cycle/proliferation markers by OF in [HBx,src] and [HBx,src,p53-/+ ] transgenic fish. Liver fibrosis was decreased as revealed by Sirius Red staining, and the liver cancer formation was eventually reduced by feeding OF. OF was also found to be capable of reducing lipid accumulation and cancer formation in non-B non-C Hepatocellular carcinoma (HCC) model in CD36 transgenic zebrafish. Whole-genome expression analysis showed that 661 genes were up-regulated, and 451 genes were downregulated by feeding OF. Upregulated genes were mostly found in protein transporter activity, and downregulated genes were enriched with response to extracellular stimulus and metal binding in gene ontology analysis. The driver gene was HNF4A revealed by NetworkAnalyst from OF differential regulated genes at various insults. OF is able to bind the asialoglycoprotein receptor (ASGR) in hepatoma cells, and increased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in both hepatoma cells and [HBx,src,p53-/+ ] transgenic fish liver cancer model. Using chromatin-immunoprecipitation, we found pSTAT3 could associate with the P1 promoter of HNF4A. Knockdown of either ASGR or HNF4A reversed OF mediated anti-cancer cell proliferation. CONCLUSIONS: Taken together, we provide evidence that OF exhibits the anti-HCC, anti-steatosis, and anti-fibrosis effect for liver in zebrafish models, and the anti-cancer potential of OF attributed to the binding to ASGR and activation of STAT3/HNF4A signaling. OF might be potentially valuable for the management of HCC.

11.
Proc Natl Acad Sci U S A ; 117(40): 24859-24866, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958674

RESUMO

Targeted treatments for advanced gastric cancer (GC) are needed, particularly for HER2-negative GC, which represents the majority of cases (80 to 88%). In this study, in silico analyses of the lysine histone demethylases (KDMs) involved in diverse biological processes and diseases revealed that PHD finger protein 8 (PHF8, KDM7B) was significantly associated with poor clinical outcome in HER2-negative GC. The depletion of PHF8 significantly reduced cancer progression in GC cells and in mouse xenografts. PHF8 regulated genes involved in cell migration/motility based on a microarray analysis. Of note, PHF8 interacted with c-Jun on the promoter of PRKCA which encodes PKCα. The depletion of PHF8 or PKCα greatly up-regulated PTEN expression, which could be rescued by ectopic expression of a PKCα expression vector or an active Src. These suggest that PTEN destabilization occurs mainly via the PKCα-Src axis. GC cells treated with midostaurin or bosutinib significantly suppressed migration in vitro and in zebrafish models. Immunohistochemical analyses of PHF8, PKCα, and PTEN showed a positive correlation between PHF8 and PKCα but negative correlations between PHF8 and PTEN and between PKCα and PTEN. Moreover, high PHF8-PKCα expression was significantly correlated with worse prognosis. Together, our results suggest that the PKCα-Src-PTEN pathway regulated by PHF8/c-Jun is a potential prognostic/therapeutic target in HER2-negative advanced GC.


Assuntos
Histona Desmetilases/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Humanos , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína Quinase C-alfa/genética , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/fisiopatologia , Fatores de Transcrição/genética
12.
Trans Am Clin Climatol Assoc ; 131: 140-146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32675854

RESUMO

WNK [with-no-lysine (K)] kinases are a family of four members of serine and threonine kinases that regulate renal Na+ and K+ transport. Mutations of WNK1 and WNK4 cause a hereditary hypertensive and hyperkalemic disease known as pseudohypoaldosteronism type II (PHA2). Unlike other WNK isoforms, WNK1 is ubiquitously expressed and regulates many other cellular processes outside the kidney. Oxidative stress response kinase (OSR1) and related STE 20/SPS1-related proline alanine-rich kinase (SPAK) are downstream kinases of WNK kinases. To examine the role of WNK kinase cascade in vivo, we generated global Wnk1-deleted mice and found that Wnk1-ablated mice die in utero from embryonic angiogenesis and cardiac developmental defects. Endothelial-specific Wnk1 deletion reveals that angiogenesis defect is due to WNK1 requirement in endothelium. We further showed that global and endothelial-deletion of Osr1 phenocopies Wnk1 deletion. Furthermore, expression of a catalytic constitutively active Osr1 transgene rescues angiogenesis defects and embryonic lethality of Wnk1-ablated mice. In zebrafish, Wnk1 knockdown causes similar angiogenesis defects to Vegf2 (Flk1) knockdown and that expression of WNK1 partially rescues Flk1 angiogenesis defects. The results indicate that WNK1 is downstream of VEGF signaling cascade. T-lymphocytes isolated from Wnk1-null mice exhibit migration defects. Inhibition of WNK1-OSR1 downstream target Na-K-2Cl cotransporter NKCC1 mimics migration defect of WNK1-deficient T-lymphocytes. Thus, WNK1-OSR1/SPAK cascade is important for angiogenesis. Regulation of ion homeostasis and cell volume may underlie the mechanism for WNK1 regulation of endothelial cell migration and angiogenesis.

13.
Biomolecules ; 10(6)2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545625

RESUMO

Oligo-fucoidan, a sulfated polysaccharide extracted from brown seaweed, exhibits anti-inflammatory and anti-tumor effects. However, the knowledge concerning the detailed mechanism of oligo-fucoidan on liver cells is obscure. In this study, we investigate the effect of oligo-fucoidan in normal hepatocytes by transcriptomic analysis. Using an oligo-fucoidan oral gavage in wild-type adult zebrafish, we find that oligo-fucoidan pretreatment enhances the immune system and anti-viral genes in hepatocytes. Oligo-fucoidan pretreatment also decreases the expression of lipogenic enzymes and liver fibrosis genes. Using pathway analysis, we identify hepatocyte nuclear factor 4 alpha (HNF4A) to be the potential driver gene. We further investigate whether hepatocyte nuclear factor 4 alpha (HNF4A) could be induced by oligo-fucoidan and the underlying mechanism. Therefore, a normal hepatocyte clone 9 cell as an in vitro model was used. We demonstrate that oligo-fucoidan increases cell viability, Cyp3a4 activity, and Hnf4a expression in clone 9 cells. We further demonstrate that oligo-fucoidan might bind to asialoglycoprotein receptors (ASGPR) in normal hepatocytes through both in vitro and in vivo competition assays. This binding, consequently activating the signal transducer and activator of transcription 3 (STAT3), increases the expression of the P1 isoform of HNF4A. According to our data, we suggest that oligo-fucoidan not only enhances the gene expression associated with anti-viral ability and immunity, but also increases P1-HNF4A levels through ASGPR/STAT3 axis, resulting in protecting hepatocytes.


Assuntos
Citoproteção/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Polissacarídeos/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Receptor de Asialoglicoproteína/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Citoproteção/genética , Suplementos Nutricionais , Perfilação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Sistema Imunitário/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Análise em Microsséries , Polissacarídeos/química , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Peixe-Zebra
14.
Cancers (Basel) ; 12(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570707

RESUMO

Radiotherapy often causes unwanted side effects such as radiation-induced fibrosis and second malignancies. Fucoidan, a sulfated polysaccharide extracted from brown seaweed, has many biological effects including anti-inflammation and anti-tumor. In the present study, we investigated the radioprotective effect of Oligo-Fucoidan (OF) using a zebrafish animal model. Adult zebrafish of wild-type and transgenic fish with hepatocellular carcinoma were orally fed with Oligo-Fucoidan before irradiation. Quantitative PCR, Sirius red stain, hematoxylin, and eosin stain were used for molecular and pathological analysis. Whole genomic microarrays were used to discover the global program of gene expression after Oligo-Fucoidan treatment and identified distinct classes of up- and downregulated genes/pathways during this process. Using Oligo-Fucoidan oral gavage in adult wild-type zebrafish, we found Oligo-Fucoidan pretreatment decreased irradiation-induced fibrosis in hepatocyte. Using hepatitis B virus X antigen (HBx), Src and HBx, Src, p53-/+ transgenic zebrafish liver cancer model, we found that Oligo-Fucoidan pretreatment before irradiation could lower the expression of lipogenic factors and enzymes, fibrosis, and cell cycle/proliferation markers, which eventually reduced formation of liver cancer compared to irradiation alone. Gene ontology analysis revealed that Oligo-Fucoidan pretreatment increased the expression of genes involved in oxidoreductase activity in zebrafish irradiation. Oligo-Fucoidan also decreased the expression of genes involved in transferase activity in wild-type fish without irradiation (WT), nuclear outer membrane-endoplasmic reticulum membrane network, and non-homologous end-joining (NHEJ) in hepatocellular carcinoma (HCC) transgenic fish. Rescue of those genes can prevent liver cancer formation. Conclusions: Our results provide evidence for the ability of Oligo-Fucoidan to prevent radiation-induced fibrosis and second malignancies in zebrafish.

15.
Cancers (Basel) ; 12(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131390

RESUMO

With-no-lysine (K)-1 (WNK1) is the founding member of family of four protein kinases with atypical placement of catalytic lysine that play important roles in regulating epithelial ion transport. Gain-of-function mutations of WNK1 and WNK4 cause a mendelian hypertension and hyperkalemic disease. WNK1 is ubiquitously expressed and essential for embryonic angiogenesis in mice. Increasing evidence indicates the role of WNK kinases in tumorigenesis at least partly by stimulating tumor cell proliferation. Here, we show that human hepatoma cells xenotransplanted into zebrafish produced high levels of vascular endothelial growth factor (VEGF) and WNK1, and induced expression of zebrafish wnk1. Knockdown of wnk1 in zebrafish decreased tumor-induced ectopic vessel formation and inhibited tumor proliferation. Inhibition of WNK1 or its downstream kinases OSR1 (oxidative stress responsive kinase 1)/SPAK (Ste20-related proline alanine rich kinase) using chemical inhibitors decreased ectopic vessel formation as well as proliferation of xenotransplanted hepatoma cells. The effect of WNK and OSR1 inhibitors is greater than that achieved by inhibitor of VEGF signaling cascade. These inhibitors also effectively inhibited tumorigenesis in two separate transgenic zebrafish models of intestinal and hepatocellular carcinomas. Endothelial-specific overexpression of wnk1 enhanced tumorigenesis in transgenic carcinogenic fish, supporting endothelial cell-autonomous effect of WNK1 in tumor promotion. Thus, WNK1 can promote tumorigenesis by multiple effects that include stimulating tumor angiogenesis. Inhibition of WNK1 may be a potent anti-cancer therapy.

16.
RSC Adv ; 10(35): 20682-20690, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35517745

RESUMO

The use of nanomaterials for drug delivery offers many advantages including the targeted delivery of drugs and their controlled release. Nonetheless, entry into the target cells remains a challenge for many nanomaterials used for drug delivery. Moreover, cellular uptake limits the therapeutic efficiency of many anticancer drugs. An important goal is to increase the specific accumulation of these nanoparticles (NPs) at the desired cancerous tissues. Notably, cancer cells show a high demand for some amino acids and we have used this knowledge to develop novel carrier systems. In this study, drug carriers were produced by the conjugation of multiple amino acids such as l-histidine (H) and l-cysteine (C) or single amino acids such as only H with the G4.5 dendrimers (G) to produce GHC aggregates and GH NP carriers, respectively. Doxorubicin was loaded into the G4.5, GH, and GHC dendrimers (G/DOX, GH/DOX and GHC/DOX, respectively) and the release mechanism was demonstrated at pH 7.4 and pH 5.0. GH/DOX and GHC/DOX showed better stability under physiological conditions than the dendrimer alone (G/DOX). GH/DOX and GHC/DOX exhibited higher inhibition of HeLa cell proliferation in in vitro and in vivo studies in zebrafish, confirming the early release of DOX by disrupting the endosomal membrane and triggering the destabilization of carriers at a lower pH of 5.0.

17.
Cancers (Basel) ; 11(12)2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795276

RESUMO

The primary type of liver cancer, hepatocellular carcinoma (HCC), has been associated with nonalcoholic steatohepatitis, diabetes, and obesity. Previous studies have identified some genetic risk factors, such as hepatitis B virus X antigens, overexpression of SRC oncogene, and mutation of the p53 tumor suppressor gene; however, the synergism between diet and genetic risk factors is still unclear. To investigate the synergism between diet and genetic risk factors in hepatocarcinogenesis, we used zebrafish with four genetic backgrounds and overfeeding or high-fat-diet-induced obesity with an omics-based expression of genes and histopathological changes. The results show that overfeeding and high-fat diet can induce obesity and nonalcoholic steatohepatitis in wild-type fish. In HBx, Src (p53-) triple transgenic zebrafish, diet-induced obesity accelerated HCC formation at five months of age and increased the cancer incidence threefold. We developed a global omics data analysis method to investigate genes, pathways, and biological systems based on microarray and next-generation sequencing (NGS, RNA-seq) omics data of zebrafish with four diet and genetic risk factors. The results show that two Kyoto Encyclopedia of Genes and Genomes (KEGG) systems, metabolism and genetic information processing, as well as the pathways of fatty acid metabolism, steroid biosynthesis, and ribosome biogenesis, are activated during hepatocarcinogenesis. This study provides a systematic view of the synergism between genetic and diet factors in the dynamic liver cancer formation process, and indicate that overfeeding or a high-fat diet and the risk genes have a synergistic effect in causing liver cancer by affecting fatty acid metabolism and ribosome biogenesis.

18.
Cancers (Basel) ; 11(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766290

RESUMO

Our three-dimensional organotypic culture revealed that human histone demethylase (KDM) 4C, a histone lysine demethylase, hindered the acini morphogenesis of RWPE-1 prostate cells, suggesting its potential oncogenic role. Knockdown (KD) of KDM4C suppressed cell proliferation, soft agar colony formation, and androgen receptor (AR) transcriptional activity in PCa cells as well as reduced tumor growth of human PCa cells in zebrafish xenotransplantation assay. Micro-Western array (MWA) analysis indicated that KD of KDM4C protein decreased the phosphorylation of AKT, c-Myc, AR, mTOR, PDK1, phospho-PDK1 S241, KDM8, and proteins involved in cell cycle regulators, while it increased the expression of PTEN. Fluorescent microscopy revealed that KDM4C co-localized with AR and c-Myc in the nuclei of PCa cells. Overexpression of either AKT or c-Myc rescued the suppressive effect of KDM4C KD on PCa cell proliferation. Echoing the above findings, the mRNA and protein expression of KDM4C was higher in human prostate tumor tissues as compared to adjacent normal prostate tissues, and higher KDM4C protein expression in prostate tumors correlated to higher protein expression level of AKT and c-Myc. In conclusion, KDM4C promotes the proliferation of PCa cells via activation of c-Myc and AKT.

19.
Cancers (Basel) ; 11(7)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269749

RESUMO

Aurora A kinase (AURKA) is an important regulator in mitotic progression and is overexpressed frequently in human cancers, including hepatocellular carcinoma (HCC). Many AURKA mutations were identified in cancer patients. Overexpressing wild-type Aurka developed a low incidence of hepatic tumors after long latency in mice. However, none of the AURKA mutant animal models have ever been described. The mechanism of mutant AURKA-mediated hepatocarcinogenesis is still unclear. A novel AURKA mutation with a.a.352 Valine to Isoleucine (V352I) was identified from clinical specimens. By using liver-specific transgenic fish overexpressing both the mutant and wild-type AURKA, the AURKA(V352I)-induced hepatocarcinogenesis was earlier and much more severe than wild-type AURKA. Although an increase of the expression of lipogenic enzyme and lipogenic factor was observed in both AURKA(V352I) and AURKA(WT) transgenic fish, AURKA(V352I) has a greater probability to promote fibrosis at 3 months compared to AURKA(WT). Furthermore, the expression levels of cell cycle/proliferation markers were higher in the AURKA(V352I) mutant than AURKA(WT) in transgenic fish, implying that the AURKA(V352I) mutant may accelerate HCC progression. Moreover, we found that the AURKA(V352I) mutant activates AKT signaling and increases nuclear ß-catenin, but AURKA(WT) only activates membrane form ß-catenin, which may account for the differences. In this study, we provide a new insight, that the AURKA(V352I) mutation contributes to early onset hepatocarcinogenesis, possibly through activation of different pathways than AURKA(WT). This transgenic fish may serve as a drug-screening platform for potential precision medicine therapeutics.

20.
Cancers (Basel) ; 11(6)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141996

RESUMO

Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths worldwide. Sorafenib was the only U.S. Food and Drug Administration (FDA) approved drug for treating advanced HCC until recently, so development of new target therapy is urgently needed. In this study, we established a zebrafish drug screening platform and compared the therapeutic effects of two multiple tyrosine kinase inhibitors, 419S1 and 420S1, with Sorafenib. All three compounds exhibited anti-angiogenesis abilities in immersed fli1:EGFP transgenic embryos and the half inhibition concentration (IC50) was determined. 419S1 exhibited lower hepatoxicity and embryonic toxicity than 420S1 and Sorafenib, and the half lethal concentration (LC50) was determined. The therapeutic index (LC50/IC50) for 419S1 was much higher than for Sorafenib and 420S1. The compounds were either injected retro-orbitally or by oral gavage to adult transgenic zebrafish with HCC. The compounds not only rescued the pathological feature, but also reversed the expression levels of cell-cycle-related genes and protein levels of a proliferation marker. Using a patient-derived-xenograft assay, we found that the effectiveness of 419S1 and 420S1 in preventing liver cancer proliferation is better than that of Sorafenib. With integrated efforts and the advantage of the zebrafish platform, we can find more effective and safe drugs for HCC treatment and screen for personalized medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...